Ju n 19 97 Multivariable Al - Salam & Carlitz polynomials associated with the type A q - Dunkl kernel
نویسندگان
چکیده
The Al-Salam & Carlitz polynomials are q-generalizations of the classical Hermite polynomials. Multivariable generalizations of these polynomials are introduced via a generating function involving a multivariable hypergeometric function which is the q-analogue of the type-A Dunkl integral kernel. An eigenoperator is established for these polynomials and this is used to prove orthogonality with respect to a certain Jackson integral inner product. This inner product is normalized by deriving a q-analogue of the Mehta integral, and the corresponding normalization of the multi-variable Al-Salam & Carlitz polynomials is derived from a Pieri-type formula. Various other special properties of the polynomials are also presented, including their relationship to the shifted Macdonald polynomials and the big-q Jacobi polynomials.
منابع مشابه
5 J un 1 99 7 Multivariable Al - Salam & Carlitz polynomials associated with the type A q - Dunkl kernel
The Al-Salam & Carlitz polynomials are q-generalizations of the classical Hermite polynomials. Multivariable generalizations of these polynomials are introduced via a generating function involving a multivariable hypergeometric function which is the q-analogue of the type-A Dunkl integral kernel. An eigenoperator is established for these polynomials and this is used to prove orthogonality with ...
متن کامل. C A ] 9 J ul 1 99 3 The q - Harmonic Oscillator and an Analog of the Charlier polynomials
A model of a q-harmonic oscillator based on q-Charlier poly-nomials of Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an ana-log of the Fourier transformation are found. A connection of the kernel of this transform with biorthogonal rational functions is observed. Models of q-harmonic oscillators are being develop...
متن کاملIsomorphisms of Type a Affine Hecke Algebras and Multivariable Orthogonal Polynomials
We examine two isomorphisms between affine Hecke algebras of type A associated with parameters q−1, t−1 and q, t. One of them maps the non-symmetric Macdonald polynomials Eη(x; q−1, t−1) onto Eη(x; q, t), while the other maps them onto non-symmetric analogues of the multivariable Al-Salam & Carlitz polynomials. Using the properties of Eη(x; q−1, t−1), the corresponding properties of these latte...
متن کاملSUSLOV: The q-harmonic oscillator and the Al-Salam and Carlitz polynomials
One more model of a q-harmonic oscillator based on the q-orthogonal polynomials of Al-Salam and Carlitz is discussed. The explicit form of q-creation and q-annihilation operators, q-coherent states and an analog of the Fourier transformation are established. A connection of the kernel of this transform with a family of self-dual biorthogonal rational functions is observed.
متن کاملAn Operator Approach to the Al-Salam-Carlitz Polynomials
We present an operator approach to Rogers-type formulas and Mehler’s formulas for the Al-Salam-Carlitz polynomials Un(x, y, a; q). By using the q-exponential operator, we obtain a Rogers-type formula which leads to a linearization formula. With the aid of a bivariate augmentation operator, we get a simple derivation of Mehler’s formula due to AlSalam and Carlitz. By means of the Cauchy companio...
متن کامل